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STEADY MOTION OF A VISCOUS CONDUCTING FLUID IN RECTANGULAR PIPES

UNDER THE INFLUENCE OF A TRANSVERSE EXTERNAL, MAGNETIC FIET
G. A. Grinberg

ABSTRACT /él;2'7:2>
The author discusses flow in a pipe of arbitrary cross
section with nonconducting walls. If the velocity v and in-
duced magnetic field H are parallel to the axis of the pipe
and the external field is uniform, the solution of the prob-
lem essentially involves determination of the Green's func-
tion for the two-dimensional equation AV - M2 ¥ = 0 and the
corresponding region (M is the Hartmann number). The author
has written an integral equation for the derivative of the
Green's function normal to the contour, through which the
entire solution is cxpressed in gquadratures. TFor the case
of large M, Grinberg has presented a rapidly converging
process of successive approximations and obtalned an asymp-
totic solution of the integral equation, by means of which

it is possible to find the values v and H at any point

within the pipe. The case of a rectangular pipe, for which

sidered.
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text.



NASA TT F-9209

1. It has been demonstrated by Shercliff in ref. 1 that if an external
magnetic field HO ig uniform and the field of velocities and the induced elec-
tric and magnetic fields are not dependent on the z-coordinate, read in the
direction of the axis of the pipe, there is a soclution of the equations of
steady motion of a conductive viscous incompressible fluid along the pipe when
the velocity v and the induced magnetic field H are directed parallel to the

z-axlis and satisfy the equations

. : o .
AH - 4npsHO  ov =0,

c* ox T © ) (l'l)
pHO oH po o2 92
bot G = (A= ). (1.2)

here the x-sxis was selected in the direction of the field HO; 0, h, n, and ¢
denote conductivity, magnetic permeability, the coefficient of viscosity of the
fluid and the speed of light respectively; a - %% = PO is the pressure gradient,
assumed to be constant in the cross section of the pipe.

The boundary conditions on the walls of the pipe, which we will consider
nonconducting, cause the two values v and H to become equal to zero on the
contour s of the pipe.

The solution of the problem has been given in ref. 1 for a pipe with a
rectangular cross section and in ref. 4 for a round pipe. In both cases, the
solution is presented in the form of trigonometric series obtained by the par-
ticular solutions method. Such a form of solution, suitable for small values
of the Hartmann number, is very unsuitable in the case of its large values,
since the convergence of the series worsens badly with an increase of the Hart-~

mann number. The situation here is similar to that which occurs in the theory

of wave diffraction on bodies of finite size, where the convergence of the



series obtained using the particular solutions method worsens sharply with an
increase of the ratio of the characteristic size of a body to wavelength. For
this reason it is necessary either to transform the derived series to a differ-
ent form under these conditions, in order to obbtain a form of solution more
suitable for large values of the Hartmann number (for a rectangular pipe the
appropriate procedure already has been noted in Shercliff's first study, ref.
l), or seek gome other approach to a precise solution of the problem.l Such
an approach, applicable to the case of a rectangular pipe, was presented in our
paper cilted as ref. 5 and involves the use of the corresponding Green's func-

tion for an equation of the form Au - ey = 0, where
_BpHY 1/
m=42)/ <.

This paper will present a generalization of this method for the case of a pipe
of arbitrary cross section. Particular attention is given to the case of large
Hartmann numbers. As will be shown below, it is especially in the case of
large Hartmann numbers that this method is particularly effective and makes it
possible to obtain an approximate sclution of the problem in very simple form.
2. Proceeding to the solution of the problem, we introduce new functions

in accordance with the usual procédure, specifically

W, =v =% aH"'— » =,——c;-_-.— —— Po £~ =N
+ ( qx) a 4“‘/‘"‘ y 9 21m I} (<e.k)

lAn approximate solution of the problem, based on physical considerations, mak-
ing it possible to simplify the initial equations, has been given in refs. 1-3,

6 and elsevhere.
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for which equations of the following form are obtained

== 4 2.2
bw, =2m 5= ( )
with the boundary conditions
wﬂ,::thl.s::q&(s).l (2.3)
Assuming further
wtze?-mzq,i' ' (2.4)

we obtain for the function ¢, the single-type equation

A?t—mz?j—_:o_f (2'5)
and the boundary conditions
:;e:tn&(a)g (s). (2.6)

Now introducing into consideration the Green's function for equation (2.5),

having the forml

g(Pv Q)Eg(xv Iy E) 71)= —‘%‘Ko(({lr)—f—u(x, Y, &, 7]),.' (2'7)

lThis obviously is related directly to the corresponding Green's function for a
two-dimensional Helmholtz equation A ¢+ k%p = 0, since equation (2.5) differs
from a Helmholtz equation only by replacement of the real wave number k by the

imaginary wave number, k = im.



where r = PQ is the distance between the fixed point P(x, y) and the variable
point Q(&, ) of the region bounded by the contour s; K,(z) is MacDonald's

function; u(x, y, £, 7) is a solution of equation (2.5), not having singulari-

ties within s, satisfying on s the equation
1
u |a=f,?Ko(mr) lar

so that gig = 0, we obtain

va(P=0,l0 9= [ .} 5 ds=[ 0, (@ ds, (2.8)

Ny ()

where n is the external normal to the contour s and Q(§,7%) is a point of the

contour. This gives further

U= (pse™+g_e")=—g [ tshm (x—8) 2L ds, (2.9)
; @ = :
aH-qx =5 (e —9_e™)= g [ tchm(x—8) 2L ds, (2.10)

)

The value g%-entering into these formulas admits the following simple
physical interpretation in terms of the electrostatic problem. We will assume
that the fluid is removed from the pipe which we have investigated, the walls
have been made conductive and within these walls there is an infinitely long
filament with a charge having the linear density e0 = -cos mz; the charge
varies sinusoildally along the length of the filament; the filament passes
through the point P(x, y, 0), parallel to the axis of the pipe (z-axis). Under
the influence of this charge induced charges appear on the walls of the pipe.

These induced charges have the surface density G = OP(S) cos mz, where oP(s)

is dependent only on the coordinates &, 7 of the considered point on the wall

/1723
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of the pipe, i.e., only on the position on the contour s of its projection Q on
the plane z = 0, and also on the coordinates x, y of the point P. In this case

we have the relationship

. (2.11)

- 92
°’(s)lq— _d_u_ 0

dg |
an Q

The density aP(Q) satisfies the following integral equation

where applies to this same point Q(%,n ) of the contour s as oP(s):zoP(Q).l

or(Q) = Ky (mED) (:P'Q) cos bpg—
= ’ ‘ (2.12)
— — | 3p(A) K, (mAQ) toslapdsy, 1
@ .
where Kl(z) = -Ké(Z), Q and A are fixed and varilable points on the contour s;

QMQ is the angle between the external normal to s at the point Q and the vector
MQ, where M is some point in the region; the integral is applied along the con-
tour s (figure 1) and dsA denotes an element of arc of the c¢d ntour at the

point A.

Figure 1

1The explanation of this assertion and the derivation of integral equation

(2.12) for the density cP(Q) is given in the Appendix at the end of the paper.
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If UP(Q) is found from this integral equation, by substituting it in place
of g% into equations (2.9) and (2.10), we obtain the solution of the formlated
problem. In this paper we are concerned, as indicated above, with the case of
large Hartmann numbers and we now will demonstrate that in this case an approxi-
mate solution of equation (2.12) can be found with rather general assumptions
concerning the configuration of the contour s, provided we limit ourselves to a
consideration of such points P(x, y) within the contour for which mli*“l, where
1 is the shortest distance from this point to the contour.

In actuality, for the solution of equation (2.12), in this case, we will

attempt to apply the successive approximations method; as the first approxima-

tion we select the wvalue

ki

Q)= cos brg, (2.13)

obtained by dropping the integral term in (2.12). Since, in accordance with
the condition, we have mPQ§;>l, it is possible to use the asymptotic represen-

tation
LT s
K@=V 5;7¢

which gives

P Q=Y g =t sostm.

—~
ro

In order to obtain a second approximation oég), we introduce the value

(2.1k4) ogl) into the right-hand side of equation (2.12)

j —Y _m —m 1 (myh P
Q=1 gl e costn— = (%) (.j) “Fr KimAQ X (2.15)

X cos i cos Opadsy.

7
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It can be seen directly from this formula that for sufficiently large
values m no appreciable contribution to the value of the integral is given ex-
cept by the part of the arc of the contour directly adjacent to the point Q.
In actuality, as soon as we withdraw from @ by such a distance AQ that mAQE?’l

it is possible to assume

Kl (IﬂA Q)= l/ ZﬁZQ e"""o' ‘

so that the product e'mPAKl(mAQ) is proportional to e'm(PA + AQ); here in the
exponent w$ have the value m(PA + AQ), where PA + AQ gives the length of broken
PAQ,jZ;§;252£g the value PQ entering into the exponent in the first term to the
right in equation (2.15), the farther we depart from the point Q.1
Therefore, for sufficiently large m it is necessary in the asymptotic computa-
tion of the integral entering into (2.15) to limit ourselves solely to the im-
mediate neighborhood of the point Q.

We now will make the corresponding computations, assuming for simplicity
that Q 1s not an angular point of the contour. After denoting the radius of
curvature of the arc of the contour at the point Q by P, the center of curva-
ture by 0, and introducing as an independent variable in the integration the
length AQ = § of the chord connecting the points A and Q and assuming PQ = a,
[_AOQ = 2B, we obtain, assuming that § < a and §<€§2p, the following relations,

true in contiguity to Q, to the right of it (see figure 1);

1At least in a case when the contour is convex, as we will assume hereafter as
a simplification. A generalization of the derivation for more general casges

could be accomplished without special difficulties.
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‘cos 04p=sinB -'_—-"—;—-

= (2.16)

- PA= Va —QaCcos(—-——epq—-p) +0 = .

_ . e T ’—.\
——. /1-—2 lcosero'——-i-smel’ol/l'— 492Jﬂ'(';) "": (2.17)

=a—{sin on—l—

dsy=2pdp = — e

|
| (2.18)
{

Vg

For points A situated to the left of Q the equations (2.16) and (2.18) re-
main applicable, but (2.17) is replaced by PA = a + § sin GPQ Foeue
In the asymptotic computation of the integral entering into (2.15) it is

possible for sufficiently large m to approximately replace it by

. § VP PA 1{ {(mAQ)cos 9,40 cos emdsA ~~

PO " sin _c_ ? o oln . _c_‘ _
ST [a[e--(a-s 82K, (m) = dc'-'-'; e (u-:,'n fomKl(r_nC) % dc].._

cos 0,.0 iy

=avrg © | FK R eh(xsina dx (2.19)

o~ ‘/?—E ' G(’)(Q)I xK, (x) chi(x sin Opg)dx =
mip £ )

o (Q),

VZm ”p cosd Opg

and it is assumed that e <a and ¢ <2p, but m¢> 1 and the contributions to
the integral from arcs adjacent to Q on the right and left are taken into ac-

count separately and th

o
a
<

=
<
|

=
|
|

is replaced by its value at the point Q.
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By introducing the derived value (2.19) into equation (2.15) we find that

within the limits of the accuracy of our computations, we have the relation

Q= (Q 1~ 5maimrg | (2.20)

- 2mp cosd 0'9

Since mp > 1 and since for an inner point of a convex contour not too

close to its boundary cos 6_. does not become equal to zero,l it follows from

PQ
(2.20) that for sufficiently large values m cég)(q) differs as little as de-
sired from ol()l)(q), i.e., in this case, the integral term in eguation (2.12)
gives only a relatively small contribution to the value OP(Q), which in the
future, depending on the desired accuracy, we will assume equal to cée)(Q) or
even simply equal to cél)(Q).

Comment. As an example we will consider the case of a circular contour s
and we will consider the point P coinciding with the center of the circle. As-
suming the radiusg of the circular contour is equal to R, we find, by using
(2.20) and (2.13) and noting that in this case PQ =R, 8,, =0,

°9’(Q)=—3K—‘;T&—(1—-2%E). (2.21)

This approximate formula for o?(Q) can be compared with a precise formula,

since in this case the precise Green's function is found easily and is equal to2

1Except the case when the contour has a very elongated configuration; then cos
GPQ can be as close to zero as desired,
2Because (2.22) obviously satisfies equation (2.5), it becomes equal to zero

vhen r = R and when r = O has a singularity of the required type (compare equa-

tion (2.7)).

10



Z(P. Q)=-— [Ko(mr)-—Ko(mR) 502:2) (2.22)

where r is the distance of the point Q from the center P of the circle. Accord-

ing to (2.11), we now obtain the precise value oP(Q,) , to wit:

. __i;’_ . 1 .
aP(Q')_ or lr=2~  28RIj(mR) ° (2.23)

Taking into account that when 7z=> 1 the asymptotic expressions for Io(z)

and Kl(z) have the form

‘Io(z),'— [1“' 2(8:)2 ] (2.24)
Ki(2)= 1/_-—,; 1 g—gr+]s
we find that
?i)((g)) =1— (2;!?)2 R }{ (2.25)
whereas for the first approximation we have
cl)(Q) —1a e, | (2.26)

ap (Q) 2mR

that is, the introduction of a correction factor in equation (2.20) appreciably
improves the result.
3. We now will proceed to determination of v and H. Using (2.11), we
will rewrite equations (2.9)-(2.10) so that
v=—q ‘Eshm(x——E)a;(Q)ds,
() !

aH-—i-qx:q j 3 chm(x—-'E)Or(Q)ds' ;
(1)

(3.1)

(3.2)

11
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where x, y are the coordinates of that point P at which the values v and H are
analyzed, and €, mare the coordinates of the point Q of the contour s to which
the element ds of the arc applies.

For sufficiently large values of the Hartmann number it is possible to as-

sume approximately in (3.1)-(3.2) that GP(Q) = oél)(Q), which gives

v= — :q fEshm(x-—E)K, (mPQ)coser;ds, ’ (3.3)
(s
efl+qx =L [ tchm(x—8§) K, (mPQ)cos Oreds. (3.%)

(®

Taking into account that

PO=\/(x——W—*-(y—-ﬂ)2>\x—E}.

and that when mPQ -1 the products
m(x—E) K,(mPQ) and chm(x—¥§) K, (mPQ)

have the order of magnitude

Ve — o] ,
VmPQ !

we see that an appreciable contribution to the values of the integrals comes
only from the segments of the contour s adjacent to those points Ql and Q2 at

which it is intersected by the straight line # = v, parallel to the extern
magnetic field HO (figure 2). Denoting by £, and &, the §{~th coordinates of

these points, and in accordance with figure 2,xﬁ>>£l and X~ &5, noting that in

contiguity with Ql and Q2 it can be assumed approximately that

. (g —mT)?
—m| a2y

K, (mPQ) = V‘z—,,,—l—}:g—le Hetl, i=1,2,

12



Figure 2

and substituting this value into (3.3) we find, by replacing the slowly vari-

able factors § cos QPQ by their values at the points Q; and Q2 and removing

them from the integral signsl

@ mfy—mp
ver -2 |/ (—1 yiﬁ‘l‘&’& T _dn
'/l ‘ \/‘x -
—C0

= oot 9’0‘ ( 3. 5)
= (5 — Ex) = Qle

Here, as before, it is assumed that cos 6_,. aé 0, the curvature of the curve

PQi
in the segments of integration in contiguity with Q; and Q, is neglected, i.e.,

it is assumed that dx = ds cos ePQi’ and integration, as usual in such cases,

is carried out in the entire interval

—o L . |

1 . .
The factor (-1)* appears under the sign of the sum in (3.5) due to the fact
that in contiguity with

& b (x—"'E)f-‘—"% ™ E—0 é}z_.enﬁz—ﬂ"

and in contiguity with
Qs shm (x— E) & B e _;_‘ul.ll'—i‘l .. R

13
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Thus, the velocity v is determined only by the length of the chord Qng,
corresponding to the coordinate y of the point P and is not dependent on x
("layered movement").

Similarly we obtain

aH 4 qx o2 2 (5, +8y), (3.6)
which also can be written as
2nPO . .
He~ 22 (6 — ) — (x— 1), (3.7)

where (x - &) and (£2 - x) are the distances from the considered point P(x, y)
to the points Ql(il, y) and Qg(ig, y) of the contour and it is taken into ac-

count that

la

__d4npo
e« pHO®

It follows from the above, in particular, that if each chord Q)@p is divided in
half and a curve is passed through the points of separation the field H on this
curve everywhere is equal to zero.l It divides the region within the contour s
in which the field H becomes equal to zero into two parts, in each of which the
currents circulate independently? without flowing from one part to the other.
It also can be seen from {3.7) that

pHOIH " 1 . R
W ox — o WBl=—pP

“ v o

1If v is used to denote the normsl to this curve at some point along it, and T

is used to denote the tangent, it follows from the formula

4 i oH
T = H, L)t 50

that this curve is not intersected by the flow lines.

1k



where
] ={;—rotH={;[grad H, i,]

1s current density in the fluid and
B=p (i,H0~ LH)

is the vector of magnetic induction, i.e., that in the entire region within the
pipe for which equations (3.5) and (3.7) were derived, the pressure drop is
balanced by electrodynamic forces and the forces of viscous friction are negli-
gibly small.

4, Tn section 3 we found general expressions (3.5) and (3.7) for v and H,
assuming that mPQ§?>l, i.e., that the point P at which the flow is studied is
not located in the immediate neighborhood of the walls of the pipe.

We now will proceed to a study of phenomena in the layer next to the wall.
In this case it would be possible to obtain the results desired directly by
computation of the integrals entering into equations (3.1)-(3.2). However, we
will select a different approach which is less rigorous but, on the other hand,
is very simple and graphic. We proceed on the basis of equation (2.2) and from
the already derived solutions (3.5) and (3.7), which we will assume are approxi-
mately correct up to the boundary (arbitrarily selected) of the layer next to
the wall, if the latter is approached from within the pipe. It will be shown
below that the results are nof dependent (within the limits of accuracy of the
problem considered) on the selection of the position of this boundary, as

should be the case.

15



We now will consider phenomensa in the layer next to the wall in contiguity
with these same points Qi’ i =1, 2, of the contour which were discussed in
section 3.1 We now introduce a local system of rectangular coordinates n, 7 Z;Zg@
with origin at the point Q;; the n-axis is directed along the normal to the con-
tour within the pipe and the r-axis is directed along the tangent; n, 7 and 1
form a right-handed trihedral. Next, denoting by aoqthe angle between the direc-
tions n and iX”HO, at the point Q;, which we consider different from 2; we will

have

(4.1)

L w Jw
2n1( x e X cina. | =
= on COS; 5o sina; 0.

Since for sufficiently large values of the Hartmann number the thickness h
of the layer next to the wall is small in comparison with the radius of curva-
ture P of the contour s at the point Qi, we can approximately neglect the
curvature of the layer in contiguity with @; and also neglect the derivatives
of + in (4.1) in comparison with the derivatives of n. Thus, equation (4.1)

assumes the form

Pw,, ow

- = 2mcose; —= =0, (%.2)

and when n = O the boundary conditions (2.3) should be satisfied. The latter

in this case should be written simply as

Wi jp=g =— :L’qE,', i"-:'—l, 2. ll\ (L‘-.g)

lThat is, in essence at any points of the contour.

16



With respect to the second boundary condition, we will assume that when
n =h, i.e., at the outer boundary of the layer next to the wall, v and H at-
tain values determined by the equations (3.5) and (3.6). If we neglect the

value h in comparison with 2,{,: this gives

: E oy S‘ L4} - "
@ s =0 2 eH- g0l ={ iy T (1)

Thus, the boundary conditions from the direction of the point Ql will be
“r l,,=.,=q51; Dy fums = gha; @~ ,~£6=~'£’:,.=5=-q€1y ' (4.5)
and from the direction Q,2

Wy ]-=o =W, I;.:;. =gy w_ Jnmo = -;qu; w.; l-=l. =—gf,. (4.6)

Since it follows from (4.2) that

(&.7)

where At, Bt are constants and we have cos a]:/ O and cos a2~/\j\0, and provided
h is such that 2m|cos 0‘1!112\/1, such as in contiguity with Q, we will have

(with this same accuracy)

w_ = .—qu == const; W =q [Ez +(E; - Ez) e_u. -“"' ]v |

(4.8)
and in contiguity with Q2

@ _a.'='qE, =const; w_=—q[§,+(,— E,)?”'.”"']- » (4.9)

17



Hence, for v and H we obtain the equations

. u'=.g_(52—-€1)(1__e-2-»m--), | (k.10)
4 2 Po : - ! A . .
H=2 (=) (1 —emem), (4.11)
which determine the change of v and H with movement from the point Q:L within /1729

the pipe along the normal to the contour.t
Similar equations are derived for the point Qo
We note that with movement from Q,i along the normal through the layer next

to the wall the magnetic field H changes by the value

. 2= PO
=2 Z8 6 ),

which indicates the presenge of currents

J==z=c PO(5,—8)2 p HP°

(per unit length of the axis of the pipe) , flowing in thes w__= Ai_.—Fr;Bi‘;'T;z"'ﬂ‘""'_‘;‘-'——"
along the contour and in the backward direction. ‘ '
5. We also will consider a case of a rectangular contour with the sides 1
and d in the direction of the field HO and perpendicular to it. The precise
Green's function for this case, given and used for solution of the considered

problem in our study cited as ref. 5, section 5, is derived easily by the re-

flection method and is equal to

@©

A g(P' Q)EZ(X’ s 74‘)=“"'§1." E 2 {Ko[mV(xrl_'.E)ﬂ_"’(ya'-n)z]—;

T

e

8

F=—C0

=K, [m V=T G =0 — K, [m V= (@, — |+

| (5.1)
-+K, [m V(x,— B —-(y, —-'fz)‘Z]} ,

lWe note that n cos @] =X 'fl'

18



where

X, =2rl+x, x\=2rl—x, y,=2sd-+y, 7’1;=23d'_—5y‘ (5.2)

here the origin of coordinates is situated in the lower left corner of the rec-
tangle and the x- and y-aXes are directed accordingly to the right along its
lower side and upward along its left side.

If the double series (5.1) converges more rapidly, the larger is the value
of the Hartmann number. Therefore, if ml=> 1 and md;5>l, in order to obtain an
approximate solution even with a high degree of accuracy 1t is sufficient bo
limit ourselves, when substituting g into equations (2.9)-(2.10), to only a few
terms of the series (5.1). TFor example, if it is necessary to find v at the
point P(x, y), not lying within the layer next to the wall, i.e., such that
mb>> 1 (where b is the shortest distance from P to the nearest wall), the only
terms making a substantial contribution to the value v(x, y), determined using

equation (2.9), are

7 (K [ V=T =] — K, [m VT = =5 g =7}.|

which give

. : F] ..
v(x, y)== "i’” (x—=0shm(x—1) j X [gzl\’ﬁ:)-:_):;:g;)-zn)idjz.

Q S~

o~ Gm : ”K(mv(T_—;)—z:,i)"'Y".
e (e — 1 — .
w (mshmll—y | S de= (5.3)

=glshm(l—x) ™ ~ %I—

in full accordance with formula (3.5) of the general theory.

Tf the point P(x, y) is moved toward the wall x = O to such an extent that
the inequality mx -1 no longer is satisfied, but as before we would have my ». 1
and m(d - y)i?‘l, it also would be necessary to take into account terms corre-

sponding to the reflection P'(-x, y) of the point P(x, y) in the direction x = 0

19



of the rectangle, and also the reflection P"(2 {+ x, y) of f#e point P' in the

-
-

direction x = 1, i.e., the terms

& (Ko Ve TG =) — Ko (m VT Z =+ =)

With these terms taken into account, formula (5.3) would be replaced, as

can be confirmed easily, by

9 (x, )= (1—e), (5.1)

which corresponds fully to the equation (%.10) of the general theory, in which
for this particular case it must be assumed that 22 - El =1l, ¢y =0 and n = x.

In a similar way it would be possible to consider any other positions of
the point P, e.g., when it is located in the immediate neighborhood of one of
the walls v = 0 or v = d or very near one of the angles. By increasing the
number of terms used in the series (5.1) in case of necessity it always is
possible to obtain a solution of the problem with any desired degree of accu-
racy.

6. We note in conclusion that although in this paper we have been con-
cerned for the most part with the case of large Hartmann numbers the method
discussed, involving the reduction of the general problem formulated at the be-
ginning of the paper to the solution of the integral equation (2.12) for the
density GP(Q) and the subsequent guadratures (2.9)-(2.10), has a fully general
character. The simplification, introducing the assumption of a large value of
the Hartmann number, was for no other purpose than to mske it possible to indi-

cate the rapidly converging process of successive approximations for finding



GP(Q) and these approximations had a simple form.l For small and intermediate
values of the Hartmann number this process can be unsuitable or disadvantageous,
and then the solution of the problem requires the use of numerical or some other
methods of approximate solution of equation (2.12). We note also that in this
case it is unimportant whether the contour is simply or multiply-connected,
convex or not, etc., because the principal equation (2.12) and equations (2.9)-
(2.10) remain true in all cases, provided that for a multiply-connected region

s is understood as the set of contours limiting this region.

Appendix
Explanation of the Electrostatic Analogy and Derivation of the
Integral Equation (2.12)

We will consider here the internal electrostatic problem for an infinite
linear pipe with conducting walls, within which there is an infinitely long
filament with a charge having the density 0 = e cos mz (e = const); the charge
varies sinusoidally along its length; the filament passes through the point
P(x, y, 0), parallel to the axis of the pipe (z-axis). At the point M(&, n, z)
within the pipe such a filament creates an electrostatic field with the poten-
tial

«©
0. — cosmldl .
: Z.I, Aot ek (mr)cos mz =g, cos mz,

IWe have limited ourselves above to determination of the principal terms of the
asymptotic formulas for v(x, y) and H(x, y) for large values of the Hartmann
number. It is obvious that by using the same method, but making the estimates
more precisely, it would be possible to obtain the succeeding terms of the

asymptotic formulas as well.
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where

r=y(x—--(y —n)*
This field induces on the walls of the pipe charges with the surface density
3? = GP(N)cos mz , where UP(N) is dependent only on the coordinates of the pro-
Jection N of the considered point of the wall on the plane z = 0, i.e., on its
position on the contour s and on the coordinates x, y of the point P. These

charges create within the pipe a secondary field with the potential &, =

¢o( g, 7)cos mz. Tt follows from the relation

0?0, 020, 0%y __ o
FFO e e e =0

that @ satisfies within s the equation
—;%"‘“%2%22‘ — m?g, = 0,"
i.e., an equation of the form (2.5).

If it is required further than on the contour s the total potential ¢ =
wl + ¢2 becomes equal to zero, a comparison with the conditions used for deter-
mination of the Green's function introduced in section 2 shows directly that
g(P, Q) = -Kﬁ%. The value of the potential ¢ naturally applies to the same
point Q(#, ») at which the Green's function g(P, Q) is considered. In this

case for any point Q of the contour we obtain

dg | __ 1 99 _____l_
on l¢ dze on o~ eOP(Q)'(
it therefore can be seen that when
d_ﬂ‘l 172\
e=-——1—-| =09\Qh

we obtain precisely equation (2.11) of the principal text of the paper.

We now will write an integral equation which should satisfy the density Op-
We note first that the total electric field E, being the sum of the primary
field El = -grad.¢l and the secondary field Ey = -grad.¢2 should become egqual
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to zero outside the pipe, since the charges GP induced on the walls fully con~
nect all the lines of force of the primary field. Formulating the requirement
that the component En of the totél field normal to the contour should become
equal to zero with approach of the contour s from the outside to any point Q@ of
the cortour and the E, consists of the normal components of the primary field
(£,), = -%%%-and the secondary field (E,) , which according to the well known
theorem of potential theory is equal to the sum

—-a—;l:f—io—i—Znap(Q),

where

_a%‘
on o

is the value of the normal component from the induced densities 3? at the sur-
face of the pipe itself, we obtain equation (2.12) precisely and it is only

necessgary to take into account that ¢, = ¢, cos mz and @2(M) =2 f"}(A).Ko(’"AW’A'
’ (0 . :

The notations are the same as in (2.12).
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